Synergy of airborne LiDAR and Worldview-2 satellite imagery for land cover and habitat mapping: A BIO_SOS-EODHaM case study for the Netherlands

نویسندگان

  • Caspar A. Mücher
  • L. Roupioz
  • Henk Kramer
  • M. M. B. Bogers
  • Rob H. G. Jongman
  • Richard M. Lucas
  • Vasiliki Kosmidou
  • Zisis I. Petrou
  • Ioannis Manakos
  • Emilio Padoa-Schioppa
  • Maria Adamo
  • Palma Blonda
چکیده

A major challenge is to develop a biodiversity observation system that is cost effective and applicable in any geographic region. Measuring and reliable reporting of trends and changes in biodiversity requires amongst others detailed and accurate land cover and habitat maps in a standard and comparable way. The objective of this paper is to assess the EODHaM (EO Data for Habitat Mapping) classification results for a Dutch case study. The EODHaM system was developed within the BIO SOS (The BIOdiversity multiSOurce monitoring System: from Space TO Species) project and contains the decision rules for each land cover and habitat class based on spectral and height information. One of the main findings is that canopy height models, as derived from LiDAR, in combination with very high resolution satellite imagery provides a powerful input for the EODHaM system for the purpose of generic land cover and habitat mapping for any location across the globe. The assessment of the EODHaM classification results based on field data showed an overall accuracy of 74% for the land cover classes as described according to the Food and Agricultural Organization (FAO) Land Cover Classification System (LCCS) taxonomy at level 3, while the overall accuracy was lower (69.0%) for the habitat map based on the General Habitat Category (GHC) system for habitat surveillance and monitoring. A GHC habitat class is determined for each mapping unit on the basis of the composition of the individual life forms and height measurements. The classification showed very good results for forest phanerophytes (FPH) when individual life forms were analyzed in terms of their percentage coverage estimates per mapping unit from the LCCS classification and validated with field surveys. Analysis for shrubby chamaephytes (SCH) showed less accurate results, but might also be due to less accurate field estimates of percentage coverage. Overall, the EODHaM classification results encouraged us to derive the heights of all vegetated objects in the Netherlands from LiDAR data, in preparation for new habitat classifications. © 2014 Published by Elsevier B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods

Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...

متن کامل

Application of Different Methods of Decision Tree Algorithm for Mapping Rangeland Using Satellite Imagery (Case Study: Doviraj Catchment in Ilam Province)

Using satellite imagery for the study of Earth's resources is attended by manyresearchers. In fact, the various phenomena have different spectral response inelectromagnetic radiation. One major application of satellite data is the classification ofland cover. In recent years, a number of classification algorithms have been developed forclassification of remote sensing data. One of the most nota...

متن کامل

Habitat Mapping and Change Assessment of Coastal Environments: An Examination of WorldView-2, QuickBird, and IKONOS Satellite Imagery and Airborne LiDAR for Mapping Barrier Island Habitats

Habitat mapping can be accomplished using many techniques and types of data. There are pros and cons for each technique and dataset, therefore, the goal of this project was to investigate the capabilities of new satellite sensor technology and to assess map accuracy for a variety of image classification techniques based on hundreds of field-work sites. The study area was Masonboro Island, an un...

متن کامل

Mapping Soil Organic Carbon Using IRS-AWIFS Satellite Imagery (Case Study: Dehaghan Rangeland, Isfahan, IRAN)

Soil organic matter has positive consequences eht rof quality and productivityof soil and also environment, agricultural and biological sustainability and conservation ofbiodiversity and soil. Organic matter plays an important role in the physical and chemicalprocesses of soil and thus, it is of a great effect on the spectral characteristics of soil. Thisstudy was done in order to develop the m...

متن کامل

Stereo Based Very High Resolution Satellite Image Classification Using Rpcs

Detection of urban objects in very high resolution (VHR) satellite imagery is challenging due to the similarities in the spectral and textural characteristics of urban land cover classes. Therefore, additional information such as elevation data is required for a proper classification. In this study, instead of LiDAR data, elevation information generated from satellite stereo images is used to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Applied Earth Observation and Geoinformation

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2015